jelli.core.compiled_likelihood
CompiledLikelihood
A class to retrieve JIT compiled likelihood functions for the global likelihood instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
global_likelihood_instance
|
`GlobalLikelihood`
|
An instance of the |
required |
par_list
|
List[Tuple[str, str]]
|
A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., |
required |
likelihood
|
str or Tuple[str, ...]
|
The likelihood to be used. Default is 'global'. |
'global'
|
par_dep_cov
|
bool
|
If |
False
|
Attributes:
Name | Type | Description |
---|---|---|
global_likelihood_instance |
`GlobalLikelihood`
|
The instance of the |
par_list |
List[Tuple[str, str]]
|
The list of parameters considered. |
likelihood |
str or Tuple[str, ...]
|
The likelihood used. |
par_dep_cov |
bool
|
Indicates if the covariance matrix depends on the parameters. |
_negative_log_likelihood_function |
Callable
|
The function to compute the negative log-likelihood. |
_log_likelihood_data |
dict
|
The data required for the log-likelihood computation. |
_functions |
dict
|
A cache for the compiled functions. |
Methods:
Name | Description |
---|---|
negative_log_likelihood_value |
Get the jitted function for the negative log-likelihood value. |
negative_log_likelihood_grad |
Get the jitted function for the gradient of the negative log-likelihood. |
negative_log_likelihood_value_and_grad |
Get the jitted function for both the value and gradient of the negative log-likelihood. |
negative_log_likelihood_hessian |
Get the jitted function for the Hessian of the negative log-likelihood. |
observed_fisher_information |
Get the jitted function for the observed Fisher information (same as Hessian). |
negative_log_likelihood_inverse_hessian |
Get the jitted function for the inverse of the Hessian of the negative log-likelihood. |
asymptotic_covariance |
Get the jitted function for the asymptotic covariance (same as inverse Hessian). |
Examples:
Initialize the CompiledLikelihood
class with a GlobalLikelihood
instance and a parameter list:
>>> gl = GlobalLikelihood(...)
>>> par_list = [('param1', 'R'), ('param2', 'I')]
>>> likelihood = 'global'
>>> par_dep_cov = False
>>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)
Get the jitted function for the negative log-likelihood value:
>>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
>>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:
>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:
>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for both the value and gradient of the negative log-likelihood:
>>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
>>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the Hessian of the negative log-likelihood:
>>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
>>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the observed Fisher information (same as Hessian):
>>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
>>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the inverse of the Hessian of the negative log-likelihood:
>>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
>>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the asymptotic covariance (same as inverse Hessian):
>>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
>>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
__init__(global_likelihood_instance, par_list, likelihood='global', par_dep_cov=False)
Initialize the CompiledLikelihood
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
global_likelihood_instance
|
`jelli.core.global_likelihood.GlobalLikelihood`
|
An instance of the |
required |
par_list
|
List[Tuple[str, str]]
|
A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., |
required |
likelihood
|
str or Tuple[str, ...]
|
The likelihood to be used. Default is 'global'. |
'global'
|
par_dep_cov
|
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
None
|
|
Examples:
Initialize the CompiledLikelihood
class with a GlobalLikelihood
instance and a parameter list:
>>> gl = GlobalLikelihood(...)
>>> par_list = [('param1', 'R'), ('param2', 'I')]
>>> likelihood = 'global'
>>> par_dep_cov = False
>>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)
Source code in jelli/core/compiled_likelihood.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
asymptotic_covariance(argnums=0, precompiled=True)
Get the jitted function for the asymptotic covariance (same as inverse Hessian).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
argnums
|
int or Tuple[int, ...]
|
The argument numbers with respect to which the asymptotic covariance is computed. Default is |
0
|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for the asymptotic covariance. |
Examples:
Get the jitted function for the asymptotic covariance (same as inverse Hessian):
>>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
>>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
negative_log_likelihood_grad(argnums=0, precompiled=True)
Get the jitted function for the gradient of the negative log-likelihood.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
argnums
|
int or Tuple[int, ...]
|
The argument numbers with respect to which the gradient is computed. Default is |
0
|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for the gradient of the negative log-likelihood. |
Examples:
Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:
>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:
>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
negative_log_likelihood_hessian(argnums=0, precompiled=True)
Get the jitted function for the Hessian of the negative log-likelihood.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
argnums
|
int or Tuple[int, ...]
|
The argument numbers with respect to which the Hessian is computed. Default is |
0
|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for the Hessian of the negative log-likelihood. |
Examples:
Get the jitted function for the Hessian of the negative log-likelihood:
>>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
>>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
negative_log_likelihood_inverse_hessian(argnums=0, precompiled=True)
Get the jitted function for the inverse of the Hessian of the negative log-likelihood.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
argnums
|
int or Tuple[int, ...]
|
The argument numbers with respect to which the inverse Hessian is computed. Default is |
0
|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for the inverse of the Hessian of the negative log-likelihood. |
Examples:
Get the jitted function for the inverse of the Hessian of the negative log-likelihood:
>>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
>>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
|
negative_log_likelihood_value(precompiled=True)
Get the jitted function for the negative log-likelihood value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for the negative log-likelihood value. |
Examples:
Get the jitted function for the negative log-likelihood value:
>>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
>>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
negative_log_likelihood_value_and_grad(argnums=0, precompiled=True)
Get the jitted function for both the value and gradient of the negative log-likelihood.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
argnums
|
int or Tuple[int, ...]
|
The argument numbers with respect to which the gradient is computed. Default is |
0
|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for both the value and gradient of the negative log-likelihood. |
Examples:
Get the jitted function for both the value and gradient of the negative log-likelihood:
>>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
>>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
observed_fisher_information(argnums=0, precompiled=True)
Get the jitted function for the observed Fisher information (same as Hessian).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
argnums
|
int or Tuple[int, ...]
|
The argument numbers with respect to which the Fisher information is computed. Default is |
0
|
precompiled
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
Callable
|
The jitted function for the observed Fisher information. |
Examples:
Get the jitted function for the observed Fisher information (same as Hessian):
>>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
>>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
|