Skip to content

jelli.core.compiled_likelihood

CompiledLikelihood

A class to retrieve JIT compiled likelihood functions for the global likelihood instance.

Parameters:

Name Type Description Default
global_likelihood_instance `GlobalLikelihood`

An instance of the GlobalLikelihood class.

required
par_list List[Tuple[str, str]]

A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., ('param1', 'R') for a real parameter, ('param2', 'I') for an imaginary parameter).

required
likelihood str or Tuple[str, ...]

The likelihood to be used. Default is 'global'.

'global'
par_dep_cov bool

If True, the covariance matrix depends on the parameters. Default is False.

False

Attributes:

Name Type Description
global_likelihood_instance `GlobalLikelihood`

The instance of the GlobalLikelihood class.

par_list List[Tuple[str, str]]

The list of parameters considered.

likelihood str or Tuple[str, ...]

The likelihood used.

par_dep_cov bool

Indicates if the covariance matrix depends on the parameters.

_negative_log_likelihood_function Callable

The function to compute the negative log-likelihood.

_log_likelihood_data dict

The data required for the log-likelihood computation.

_functions dict

A cache for the compiled functions.

Methods:

Name Description
negative_log_likelihood_value

Get the jitted function for the negative log-likelihood value.

negative_log_likelihood_grad

Get the jitted function for the gradient of the negative log-likelihood.

negative_log_likelihood_value_and_grad

Get the jitted function for both the value and gradient of the negative log-likelihood.

negative_log_likelihood_hessian

Get the jitted function for the Hessian of the negative log-likelihood.

observed_fisher_information

Get the jitted function for the observed Fisher information (same as Hessian).

negative_log_likelihood_inverse_hessian

Get the jitted function for the inverse of the Hessian of the negative log-likelihood.

asymptotic_covariance

Get the jitted function for the asymptotic covariance (same as inverse Hessian).

Examples:

Initialize the CompiledLikelihood class with a GlobalLikelihood instance and a parameter list:

>>> gl = GlobalLikelihood(...)
>>> par_list = [('param1', 'R'), ('param2', 'I')]
>>> likelihood = 'global'
>>> par_dep_cov = False
>>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)

Get the jitted function for the negative log-likelihood value:

>>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
>>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:

>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:

>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for both the value and gradient of the negative log-likelihood:

>>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
>>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the Hessian of the negative log-likelihood:

>>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
>>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the observed Fisher information (same as Hessian):

>>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
>>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the inverse of the Hessian of the negative log-likelihood:

>>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
>>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the asymptotic covariance (same as inverse Hessian):

>>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
>>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
class CompiledLikelihood:
    '''
    A class to retrieve JIT compiled likelihood functions for the global likelihood instance.

    Parameters
    ----------
    global_likelihood_instance : `GlobalLikelihood`
        An instance of the `GlobalLikelihood` class.
    par_list : List[Tuple[str, str]]
        A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., `('param1', 'R')` for a real parameter, `('param2', 'I')` for an imaginary parameter).
    likelihood : str or Tuple[str, ...], optional
        The likelihood to be used. Default is 'global'.
    par_dep_cov : bool, optional
        If `True`, the covariance matrix depends on the parameters. Default is `False`.

    Attributes
    ----------
    global_likelihood_instance : `GlobalLikelihood`
        The instance of the `GlobalLikelihood` class.
    par_list : List[Tuple[str, str]]
        The list of parameters considered.
    likelihood : str or Tuple[str, ...]
        The likelihood used.
    par_dep_cov : bool
        Indicates if the covariance matrix depends on the parameters.
    _negative_log_likelihood_function : Callable
        The function to compute the negative log-likelihood.
    _log_likelihood_data : dict
        The data required for the log-likelihood computation.
    _functions : dict
        A cache for the compiled functions.

    Methods
    -------
    negative_log_likelihood_value(precompiled=True) -> Callable
        Get the jitted function for the negative log-likelihood value.
    negative_log_likelihood_grad(argnums=0, precompiled=True) -> Callable
        Get the jitted function for the gradient of the negative log-likelihood.
    negative_log_likelihood_value_and_grad(argnums=0, precompiled=True) -> Callable
        Get the jitted function for both the value and gradient of the negative log-likelihood.
    negative_log_likelihood_hessian(argnums=0, precompiled=True) -> Callable
        Get the jitted function for the Hessian of the negative log-likelihood.
    observed_fisher_information(argnums=0, precompiled=True) -> Callable
        Get the jitted function for the observed Fisher information (same as Hessian).
    negative_log_likelihood_inverse_hessian(argnums=0, precompiled=True) -> Callable
        Get the jitted function for the inverse of the Hessian of the negative log-likelihood.
    asymptotic_covariance(argnums=0, precompiled=True) -> Callable
        Get the jitted function for the asymptotic covariance (same as inverse Hessian).

    Examples
    --------
    Initialize the `CompiledLikelihood` class with a `GlobalLikelihood` instance and a parameter list:

    >>> gl = GlobalLikelihood(...)
    >>> par_list = [('param1', 'R'), ('param2', 'I')]
    >>> likelihood = 'global'
    >>> par_dep_cov = False
    >>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)

    Get the jitted function for the negative log-likelihood value:

    >>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
    >>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:

    >>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
    >>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:

    >>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
    >>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for both the value and gradient of the negative log-likelihood:

    >>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
    >>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the Hessian of the negative log-likelihood:

    >>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
    >>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the observed Fisher information (same as Hessian):

    >>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
    >>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the inverse of the Hessian of the negative log-likelihood:

    >>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
    >>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the asymptotic covariance (same as inverse Hessian):

    >>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
    >>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
    '''

    def __init__(
        self,
        global_likelihood_instance,
        par_list: List[Tuple[str, str]],
        likelihood: Union[str, Tuple[str, ...]] = 'global',
        par_dep_cov: bool = False,
    ):
        '''
        Initialize the `CompiledLikelihood` class.

        Parameters
        ----------
        global_likelihood_instance : `jelli.core.global_likelihood.GlobalLikelihood`
            An instance of the `GlobalLikelihood` class.
        par_list : List[Tuple[str, str]]
            A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., `('param1', 'R')` for a real parameter, `('param2', 'I')` for an imaginary parameter).
        likelihood : str or Tuple[str, ...], optional
            The likelihood to be used. Default is 'global'.
        par_dep_cov : bool, optional
            If `True`, the covariance matrix depends on the parameters. Default is `False`.

        Returns
        -------
        None

        Examples
        --------

        Initialize the `CompiledLikelihood` class with a `GlobalLikelihood` instance and a parameter list:

        >>> gl = GlobalLikelihood(...)
        >>> par_list = [('param1', 'R'), ('param2', 'I')]
        >>> likelihood = 'global'
        >>> par_dep_cov = False
        >>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)
        '''
        self.global_likelihood_instance = global_likelihood_instance
        self.par_list = par_list
        self.likelihood = likelihood
        self.par_dep_cov = par_dep_cov
        self._negative_log_likelihood_function, self._log_likelihood_data = self.global_likelihood_instance.get_negative_log_likelihood(par_list, likelihood, par_dep_cov)
        self._functions = {}

    def negative_log_likelihood_value(
        self,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for the negative log-likelihood value.

        Parameters
        ----------
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for the negative log-likelihood value.

        Examples
        --------
        Get the jitted function for the negative log-likelihood value:

        >>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
        >>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        if "negative_log_likelihood_value" not in self._functions:
            f = partial(
                jit(self._negative_log_likelihood_function),
                log_likelihood_data=self._log_likelihood_data,
            )
            if precompiled:
                f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
            self._functions["negative_log_likelihood_value"] = f
        return self._functions["negative_log_likelihood_value"]

    def negative_log_likelihood_grad(
        self,
        argnums: Union[int, Tuple[int, ...]] = 0,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for the gradient of the negative log-likelihood.

        Parameters
        ----------
        argnums : int or Tuple[int, ...], optional
            The argument numbers with respect to which the gradient is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for the gradient of the negative log-likelihood.

        Examples
        --------
        Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:

        >>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
        >>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

        Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:

        >>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
        >>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        if ("negative_log_likelihood_grad", argnums) not in self._functions:
            f = partial(
                jit(grad(self._negative_log_likelihood_function, argnums=argnums)),
                log_likelihood_data=self._log_likelihood_data,
            )
            if precompiled:
                f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
            self._functions[("negative_log_likelihood_grad", argnums)] = f
        return self._functions[("negative_log_likelihood_grad", argnums)]

    def negative_log_likelihood_value_and_grad(
        self,
        argnums: Union[int, Tuple[int, ...]] = 0,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for both the value and gradient of the negative log-likelihood.

        Parameters
        ----------
        argnums : int or Tuple[int, ...], optional
            The argument numbers with respect to which the gradient is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for both the value and gradient of the negative log-likelihood.

        Examples
        --------
        Get the jitted function for both the value and gradient of the negative log-likelihood:

        >>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
        >>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        if ("negative_log_likelihood_value_and_grad", argnums) not in self._functions:
            f = partial(
                jit(value_and_grad(self._negative_log_likelihood_function, argnums=argnums)),
                log_likelihood_data=self._log_likelihood_data,
            )
            if precompiled:
                f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
            self._functions[("negative_log_likelihood_value_and_grad", argnums)] = f
        return self._functions[("negative_log_likelihood_value_and_grad", argnums)]

    def negative_log_likelihood_hessian(
        self,
        argnums: Union[int, Tuple[int, ...]] = 0,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for the Hessian of the negative log-likelihood.

        Parameters
        ----------
        argnums : int or Tuple[int, ...], optional
            The argument numbers with respect to which the Hessian is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for the Hessian of the negative log-likelihood.

        Examples
        --------
        Get the jitted function for the Hessian of the negative log-likelihood:

        >>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
        >>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        if ("negative_log_likelihood_hessian", argnums) not in self._functions:
            f = partial(
                jit(hessian(self._negative_log_likelihood_function, argnums=argnums)),
                log_likelihood_data=self._log_likelihood_data,
            )
            if precompiled:
                f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
            self._functions[("negative_log_likelihood_hessian", argnums)] = f
        return self._functions[("negative_log_likelihood_hessian", argnums)]

    def observed_fisher_information(
        self,
        argnums: Union[int, Tuple[int, ...]] = 0,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for the observed Fisher information (same as Hessian).

        Parameters
        ----------
        argnums : int or Tuple[int, ...], optional
            The argument numbers with respect to which the Fisher information is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for the observed Fisher information.

        Examples
        --------
        Get the jitted function for the observed Fisher information (same as Hessian):

        >>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
        >>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        return self.negative_log_likelihood_hessian(argnums=argnums, precompiled=precompiled)

    def negative_log_likelihood_inverse_hessian(
        self,
        argnums: Union[int, Tuple[int, ...]] = 0,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for the inverse of the Hessian of the negative log-likelihood.

        Parameters
        ----------
        argnums : int or Tuple[int, ...], optional
            The argument numbers with respect to which the inverse Hessian is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for the inverse of the Hessian of the negative log-likelihood.

        Examples
        --------
        Get the jitted function for the inverse of the Hessian of the negative log-likelihood:

        >>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
        >>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        if ("negative_log_likelihood_inverse_hessian", argnums) not in self._functions:
            def f(par_array, scale, log_likelihood_data):
                hess = hessian(self._negative_log_likelihood_function, argnums=argnums)(par_array, scale, log_likelihood_data)
                # regularize the inverse
                d = jnp.sqrt(jnp.diag(hess))
                d2 = jnp.outer(d, d)
                R = hess / d2
                inv_R = jnp.linalg.inv(R)
                inv_hess = inv_R / d2
                return inv_hess
            f = partial(
                jit(f),
                log_likelihood_data=self._log_likelihood_data,
            )
            if precompiled:
                f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
            self._functions[("negative_log_likelihood_inverse_hessian", argnums)] = f
        return self._functions[("negative_log_likelihood_inverse_hessian", argnums)]

    def asymptotic_covariance(
        self,
        argnums: Union[int, Tuple[int, ...]] = 0,
        precompiled: bool = True,
    ) -> Callable:
        '''
        Get the jitted function for the asymptotic covariance (same as inverse Hessian).

        Parameters
        ----------
        argnums : int or Tuple[int, ...], optional
            The argument numbers with respect to which the asymptotic covariance is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
        precompiled : bool, optional
            If `True`, precompile the function. Default is `True`.

        Returns
        -------
        Callable
            The jitted function for the asymptotic covariance.

        Examples
        --------
        Get the jitted function for the asymptotic covariance (same as inverse Hessian):

        >>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
        >>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
        '''
        return self.negative_log_likelihood_inverse_hessian(argnums=argnums, precompiled=precompiled)

__init__(global_likelihood_instance, par_list, likelihood='global', par_dep_cov=False)

Initialize the CompiledLikelihood class.

Parameters:

Name Type Description Default
global_likelihood_instance `jelli.core.global_likelihood.GlobalLikelihood`

An instance of the GlobalLikelihood class.

required
par_list List[Tuple[str, str]]

A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., ('param1', 'R') for a real parameter, ('param2', 'I') for an imaginary parameter).

required
likelihood str or Tuple[str, ...]

The likelihood to be used. Default is 'global'.

'global'
par_dep_cov bool

If True, the covariance matrix depends on the parameters. Default is False.

False

Returns:

Type Description
None

Examples:

Initialize the CompiledLikelihood class with a GlobalLikelihood instance and a parameter list:

>>> gl = GlobalLikelihood(...)
>>> par_list = [('param1', 'R'), ('param2', 'I')]
>>> likelihood = 'global'
>>> par_dep_cov = False
>>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)
Source code in jelli/core/compiled_likelihood.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def __init__(
    self,
    global_likelihood_instance,
    par_list: List[Tuple[str, str]],
    likelihood: Union[str, Tuple[str, ...]] = 'global',
    par_dep_cov: bool = False,
):
    '''
    Initialize the `CompiledLikelihood` class.

    Parameters
    ----------
    global_likelihood_instance : `jelli.core.global_likelihood.GlobalLikelihood`
        An instance of the `GlobalLikelihood` class.
    par_list : List[Tuple[str, str]]
        A list of tuples specifying the parameters to be considered. Each tuple contains the parameter name and its type (e.g., `('param1', 'R')` for a real parameter, `('param2', 'I')` for an imaginary parameter).
    likelihood : str or Tuple[str, ...], optional
        The likelihood to be used. Default is 'global'.
    par_dep_cov : bool, optional
        If `True`, the covariance matrix depends on the parameters. Default is `False`.

    Returns
    -------
    None

    Examples
    --------

    Initialize the `CompiledLikelihood` class with a `GlobalLikelihood` instance and a parameter list:

    >>> gl = GlobalLikelihood(...)
    >>> par_list = [('param1', 'R'), ('param2', 'I')]
    >>> likelihood = 'global'
    >>> par_dep_cov = False
    >>> compiled_likelihood = CompiledLikelihood(gl, par_list, likelihood, par_dep_cov)
    '''
    self.global_likelihood_instance = global_likelihood_instance
    self.par_list = par_list
    self.likelihood = likelihood
    self.par_dep_cov = par_dep_cov
    self._negative_log_likelihood_function, self._log_likelihood_data = self.global_likelihood_instance.get_negative_log_likelihood(par_list, likelihood, par_dep_cov)
    self._functions = {}

asymptotic_covariance(argnums=0, precompiled=True)

Get the jitted function for the asymptotic covariance (same as inverse Hessian).

Parameters:

Name Type Description Default
argnums int or Tuple[int, ...]

The argument numbers with respect to which the asymptotic covariance is computed. Default is 0 (the parameters). Use (0, 1) to include the scale as well.

0
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for the asymptotic covariance.

Examples:

Get the jitted function for the asymptotic covariance (same as inverse Hessian):

>>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
>>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def asymptotic_covariance(
    self,
    argnums: Union[int, Tuple[int, ...]] = 0,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for the asymptotic covariance (same as inverse Hessian).

    Parameters
    ----------
    argnums : int or Tuple[int, ...], optional
        The argument numbers with respect to which the asymptotic covariance is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for the asymptotic covariance.

    Examples
    --------
    Get the jitted function for the asymptotic covariance (same as inverse Hessian):

    >>> asymp_cov_func = compiled_likelihood.asymptotic_covariance(argnums=0)
    >>> asymp_cov = asymp_cov_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    return self.negative_log_likelihood_inverse_hessian(argnums=argnums, precompiled=precompiled)

negative_log_likelihood_grad(argnums=0, precompiled=True)

Get the jitted function for the gradient of the negative log-likelihood.

Parameters:

Name Type Description Default
argnums int or Tuple[int, ...]

The argument numbers with respect to which the gradient is computed. Default is 0 (the parameters). Use (0, 1) to include the scale as well.

0
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for the gradient of the negative log-likelihood.

Examples:

Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:

>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:

>>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
>>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def negative_log_likelihood_grad(
    self,
    argnums: Union[int, Tuple[int, ...]] = 0,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for the gradient of the negative log-likelihood.

    Parameters
    ----------
    argnums : int or Tuple[int, ...], optional
        The argument numbers with respect to which the gradient is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for the gradient of the negative log-likelihood.

    Examples
    --------
    Get the jitted function for the gradient of the negative log-likelihood with respect to the parameters:

    >>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=0)
    >>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)

    Get the jitted function for the gradient of the negative log-likelihood with respect to both the parameters and the scale:

    >>> nll_grad_func = compiled_likelihood.negative_log_likelihood_grad(argnums=(0, 1))
    >>> nll_grad = nll_grad_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    if ("negative_log_likelihood_grad", argnums) not in self._functions:
        f = partial(
            jit(grad(self._negative_log_likelihood_function, argnums=argnums)),
            log_likelihood_data=self._log_likelihood_data,
        )
        if precompiled:
            f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
        self._functions[("negative_log_likelihood_grad", argnums)] = f
    return self._functions[("negative_log_likelihood_grad", argnums)]

negative_log_likelihood_hessian(argnums=0, precompiled=True)

Get the jitted function for the Hessian of the negative log-likelihood.

Parameters:

Name Type Description Default
argnums int or Tuple[int, ...]

The argument numbers with respect to which the Hessian is computed. Default is 0 (the parameters). Use (0, 1) to include the scale as well.

0
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for the Hessian of the negative log-likelihood.

Examples:

Get the jitted function for the Hessian of the negative log-likelihood:

>>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
>>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def negative_log_likelihood_hessian(
    self,
    argnums: Union[int, Tuple[int, ...]] = 0,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for the Hessian of the negative log-likelihood.

    Parameters
    ----------
    argnums : int or Tuple[int, ...], optional
        The argument numbers with respect to which the Hessian is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for the Hessian of the negative log-likelihood.

    Examples
    --------
    Get the jitted function for the Hessian of the negative log-likelihood:

    >>> nll_hess_func = compiled_likelihood.negative_log_likelihood_hessian(argnums=0)
    >>> nll_hess = nll_hess_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    if ("negative_log_likelihood_hessian", argnums) not in self._functions:
        f = partial(
            jit(hessian(self._negative_log_likelihood_function, argnums=argnums)),
            log_likelihood_data=self._log_likelihood_data,
        )
        if precompiled:
            f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
        self._functions[("negative_log_likelihood_hessian", argnums)] = f
    return self._functions[("negative_log_likelihood_hessian", argnums)]

negative_log_likelihood_inverse_hessian(argnums=0, precompiled=True)

Get the jitted function for the inverse of the Hessian of the negative log-likelihood.

Parameters:

Name Type Description Default
argnums int or Tuple[int, ...]

The argument numbers with respect to which the inverse Hessian is computed. Default is 0 (the parameters). Use (0, 1) to include the scale as well.

0
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for the inverse of the Hessian of the negative log-likelihood.

Examples:

Get the jitted function for the inverse of the Hessian of the negative log-likelihood:

>>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
>>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def negative_log_likelihood_inverse_hessian(
    self,
    argnums: Union[int, Tuple[int, ...]] = 0,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for the inverse of the Hessian of the negative log-likelihood.

    Parameters
    ----------
    argnums : int or Tuple[int, ...], optional
        The argument numbers with respect to which the inverse Hessian is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for the inverse of the Hessian of the negative log-likelihood.

    Examples
    --------
    Get the jitted function for the inverse of the Hessian of the negative log-likelihood:

    >>> nll_inv_hess_func = compiled_likelihood.negative_log_likelihood_inverse_hessian(argnums=0)
    >>> nll_inv_hess = nll_inv_hess_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    if ("negative_log_likelihood_inverse_hessian", argnums) not in self._functions:
        def f(par_array, scale, log_likelihood_data):
            hess = hessian(self._negative_log_likelihood_function, argnums=argnums)(par_array, scale, log_likelihood_data)
            # regularize the inverse
            d = jnp.sqrt(jnp.diag(hess))
            d2 = jnp.outer(d, d)
            R = hess / d2
            inv_R = jnp.linalg.inv(R)
            inv_hess = inv_R / d2
            return inv_hess
        f = partial(
            jit(f),
            log_likelihood_data=self._log_likelihood_data,
        )
        if precompiled:
            f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
        self._functions[("negative_log_likelihood_inverse_hessian", argnums)] = f
    return self._functions[("negative_log_likelihood_inverse_hessian", argnums)]

negative_log_likelihood_value(precompiled=True)

Get the jitted function for the negative log-likelihood value.

Parameters:

Name Type Description Default
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for the negative log-likelihood value.

Examples:

Get the jitted function for the negative log-likelihood value:

>>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
>>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def negative_log_likelihood_value(
    self,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for the negative log-likelihood value.

    Parameters
    ----------
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for the negative log-likelihood value.

    Examples
    --------
    Get the jitted function for the negative log-likelihood value:

    >>> nll_value_func = compiled_likelihood.negative_log_likelihood_value()
    >>> nll_value = nll_value_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    if "negative_log_likelihood_value" not in self._functions:
        f = partial(
            jit(self._negative_log_likelihood_function),
            log_likelihood_data=self._log_likelihood_data,
        )
        if precompiled:
            f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
        self._functions["negative_log_likelihood_value"] = f
    return self._functions["negative_log_likelihood_value"]

negative_log_likelihood_value_and_grad(argnums=0, precompiled=True)

Get the jitted function for both the value and gradient of the negative log-likelihood.

Parameters:

Name Type Description Default
argnums int or Tuple[int, ...]

The argument numbers with respect to which the gradient is computed. Default is 0 (the parameters). Use (0, 1) to include the scale as well.

0
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for both the value and gradient of the negative log-likelihood.

Examples:

Get the jitted function for both the value and gradient of the negative log-likelihood:

>>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
>>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def negative_log_likelihood_value_and_grad(
    self,
    argnums: Union[int, Tuple[int, ...]] = 0,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for both the value and gradient of the negative log-likelihood.

    Parameters
    ----------
    argnums : int or Tuple[int, ...], optional
        The argument numbers with respect to which the gradient is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for both the value and gradient of the negative log-likelihood.

    Examples
    --------
    Get the jitted function for both the value and gradient of the negative log-likelihood:

    >>> nll_value_and_grad_func = compiled_likelihood.negative_log_likelihood_value_and_grad(argnums=0)
    >>> nll_value, nll_grad = nll_value_and_grad_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    if ("negative_log_likelihood_value_and_grad", argnums) not in self._functions:
        f = partial(
            jit(value_and_grad(self._negative_log_likelihood_function, argnums=argnums)),
            log_likelihood_data=self._log_likelihood_data,
        )
        if precompiled:
            f(jnp.zeros(len(self.par_list)), self.global_likelihood_instance._reference_scale)
        self._functions[("negative_log_likelihood_value_and_grad", argnums)] = f
    return self._functions[("negative_log_likelihood_value_and_grad", argnums)]

observed_fisher_information(argnums=0, precompiled=True)

Get the jitted function for the observed Fisher information (same as Hessian).

Parameters:

Name Type Description Default
argnums int or Tuple[int, ...]

The argument numbers with respect to which the Fisher information is computed. Default is 0 (the parameters). Use (0, 1) to include the scale as well.

0
precompiled bool

If True, precompile the function. Default is True.

True

Returns:

Type Description
Callable

The jitted function for the observed Fisher information.

Examples:

Get the jitted function for the observed Fisher information (same as Hessian):

>>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
>>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)
Source code in jelli/core/compiled_likelihood.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def observed_fisher_information(
    self,
    argnums: Union[int, Tuple[int, ...]] = 0,
    precompiled: bool = True,
) -> Callable:
    '''
    Get the jitted function for the observed Fisher information (same as Hessian).

    Parameters
    ----------
    argnums : int or Tuple[int, ...], optional
        The argument numbers with respect to which the Fisher information is computed. Default is `0` (the parameters). Use `(0, 1)` to include the scale as well.
    precompiled : bool, optional
        If `True`, precompile the function. Default is `True`.

    Returns
    -------
    Callable
        The jitted function for the observed Fisher information.

    Examples
    --------
    Get the jitted function for the observed Fisher information (same as Hessian):

    >>> fisher_info_func = compiled_likelihood.observed_fisher_information(argnums=0)
    >>> fisher_info = fisher_info_func(jnp.array([0.1, 0.2]), 1000.0)
    '''
    return self.negative_log_likelihood_hessian(argnums=argnums, precompiled=precompiled)