jelli.utils.par_helpers
get_par_monomial_indices(keys_pars, keys_coeff)
Computes sorted indices mapping linear parameters to bilinear ones that exist in the provided coefficient list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys_pars
|
list
|
List of linear parameter keys, each element is a tuple |
required |
keys_coeff
|
list
|
List of bilinear coefficient keys. Each element is a tuple |
required |
Returns:
Type | Description |
---|---|
`np.ndarray`
|
Sorted indices of bilinear coefficients that match |
Source code in jelli/utils/par_helpers.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
get_sector_indices_from_wcxf(eft, basis, sectors)
Get indices of Wilson coefficients from the full basis corresponding to specified sectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
eft
|
str
|
The effective field theory (EFT) name, e.g., |
required |
basis
|
str
|
The Wilson coefficient basis name, e.g., |
required |
sectors
|
list
|
A list of sector names to extract indices for. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
An array of indices corresponding to the Wilson coefficients in the specified sectors. |
Source code in jelli/utils/par_helpers.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
get_wc_basis_from_wcxf(eft, basis, sector=None, split_re_im=True)
Retrieve the Wilson coefficient basis from WCxf.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
eft
|
str
|
The effective field theory (EFT) name, e.g., |
required |
basis
|
str
|
The Wilson coefficient basis name, e.g., |
required |
sector
|
str
|
The RGE sector of interest. If |
None
|
split_re_im
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
list
|
A sorted list of Wilson coefficient names. If |
Source code in jelli/utils/par_helpers.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
keys_array(keys)
Converts a list of tuples into a numpy array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys
|
list
|
A list containing tuples. |
required |
Returns:
Type | Description |
---|---|
`np.ndarray`
|
A numpy array with dtype=tuple containing the provided keys. |
Source code in jelli/utils/par_helpers.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
keys_isin(keys_a, keys_b)
Checks if elements in keys_a
exist in keys_b
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys_a
|
list
|
List of keys to check. |
required |
keys_b
|
list
|
List of reference keys. |
required |
Returns:
Type | Description |
---|---|
`np.ndarray`
|
Boolean numpy array indicating presence of each key in |
Source code in jelli/utils/par_helpers.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
keys_product(keys_a, keys_b)
Computes the Cartesian product of two sets of keys, producing bilinear combinations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys_a
|
A list where each element is a tuple of the form (w, c). |
required | |
keys_b
|
Another list with elements of the form (w, c). |
required |
Returns:
Type | Description |
---|---|
list
|
A list of bilinear combinations in the form (w_a, w_b, c_a + c_b). |
Source code in jelli/utils/par_helpers.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|